Showing posts with label Fractures. Show all posts
Showing posts with label Fractures. Show all posts

Tuesday, February 18, 2014

Facial Fractures

Background

Facial fractures occur for a variety of reasons related to sports participation: contact between players (eg, a head, fist, elbow); contact with equipment (eg, balls, pucks, handlebars); or contact with the environment, obstacles, or a playing surface (eg, wrestling mat, gymnastic equipment, goalposts, trees). Direct body contact accounts for the majority of sports-related injuries, and the most commonly associated soft tissue injuries were found in the head and neck region.[1]

Although most sports-related facial injuries are minor, the potential for serious damage exists. A physician examining these injuries must rapidly assess the patient in a consistent and methodical manner, allowing for prompt diagnosis and appropriate treatment, while considering the physical demands of the sport, as well as the athlete's return to play.

Facial fractures may be associated with head and cervical spine injuries.[2, 3] A review by Boden et al of catastrophic injuries associated with high school and college baseball demonstrated 1.95 direct catastrophic injuries annually, including severe head injuries, cervical injuries, and associated facial fractures.[3]

Fractures of the facial bones require a significant amount of force. The physician must take into account the mechanism of the injury as well as the physical examination findings when assessing the patient.

Forces that are required to produce a fracture of the facial bones are as follows:

Nasal fracture – 30 gZygoma fractures – 50 gMandibular (angle) fractures – 70 gFrontal region fractures – 80 gMaxillary (midline) fractures – 100 gMandibular (midline) fractures – 100 gSupraorbital rim fractures – 200 g

For patient education resources, see the Back, Ribs, Neck, and Head Center; Breaks, Fractures, and Dislocations Center; Sports Injury Center; Eye and Vision Center; and Teeth and Mouth Center.

Also, see Facial Fracture, Broken Nose, Broken Jaw, Concussion, Black Eye, and Broken or Knocked-out Teeth.

NextEpidemiologyFrequencyUnited States

In 1977, Schulz noted that athletic injuries account for 11% of all facial fractures and that facial injuries occur in 2% of all athletes.[4] More recently, Reehal noted that facial fractures accounted for 4-18% of all sports injuries.[5] A review by Romeo of facial fractures sustained by athletes during sports participation noted that sporting activities account for 3-29% of facial injuries and 10-42% of all facial fractures.[6] Tanaka and colleagues showed that 10.4% of all maxillofacial fractures are related to sports.[7]

In another report, Laskin stated that 250,000 individuals, many of whom were children, experience facial trauma while engaged in athletic activities.[8] The review by Hwang et al demonstrated that athletes aged 11-20 years were the population that accounted for most (40.3%) sports-related facial bone fractures.[1] Additionally, it is estimated more than 100,000 sport-related injuries could be prevented by wearing appropriate head and face protection.[8]

Retrospective analysis demonstrated a significant male predominance (13.75:1) among athletes who sustained sports-related facial bone fractures.[1] The sports most commonly associated with facial fractures were soccer (38.1%), baseball (16.1%), basketball (12.7%), martial arts (6.4%), and skiing/snowboarding (4.7%).[1]

Nearly 75% of facial fractures occur in the mandible, zygoma, and nose.[9] Sports participation is the most common cause of mandibular fractures (31.5%), followed closely by motor vehicle accidents (27.2%). A study of facial fractures sustained during recreational baseball and softball demonstrated that the zygoma or zygomatic arch was the most common fracture subtype, followed by temporoparietal skull fractures and orbital blow-out fractures.[10] A number of studies in the medical literature, however, indicate that the nasal bones are the most commonly fractured bones in the face, but because many of these patients do not seek medical treatment or the injuries are managed in the outpatient setting, the statistics may not reflect this trend.[2] It is likely that the nasal bones are more commonly fractured because of the lesser degree of force that is required to fracture the bone.[11]

Fractures of the orbit occur more commonly in young adult and adolescent males: the mean age for adult males is 32 years; the mean age for children, 12.5 years, and the majority of orbital fractures occur in boys. In addition to sports-related injuries, injuries sustained in motor vehicle collisions, assaults, and occupational injuries account for the majority of orbital fractures.[12]

PreviousNextFunctional Anatomy

Frontal sinus: Both the anterior and posterior wall may be damaged. Because the posterior wall is adjacent to the dura mater, damage in this region could result in central nervous system (CNS) complications such as a cerebrospinal fluid (CSF) leak or meningitis.

Orbital: The bony orbit (see image below) is composed of 7 bones of varying thickness. The frontal bone forms the supraorbital rim and orbital roof. The medial surface consists of the ethmoid, whereas the greater wing of the sphenoid and the zygoma create the lateral margin. Inferiorly, the floor and infraorbital rim are formed by the zygoma and maxilla. This portion is very thin; therefore, it is the most common site of fracture within the orbit. Fracture of the orbital floor, also known as a blow-out fracture, can result in entrapment of the inferior rectus muscle, limiting upward gaze.

The bony walls of the orbit. The bony walls of the orbit.

The most common fracture to the orbital rim involves the orbital zygomatic region; this fracture, which typically results from a high-impact blow to the lateral orbit, often results in a fracture to the orbital floor as well.[12]

Nasal: The nose is the most prominent feature of the facial structures and is the most commonly fractured of all facial bones.[5] The upper third of the nose is supported by the paired nasal bones and the frontal process of the maxilla, whereas the lower two thirds of the nose are maintained by cartilaginous structures.[11] A more serious injury, a nasoorbitoethmoid fracture, occurs with trauma to the bridge of the nose. This injury involves extension into the frontal and maxillary bones and can result in disruption of the cribriform plate with concomitant CSF rhinorrhea.

Zygomatic/zygomaticomaxillary complex: The zygoma, like the nasal bones, is a prominent facial bone and, therefore, is prone to injury. Commonly, a breakage in this area involves a central depression with fractures at both ends. The central fragment may impinge upon the temporalis muscles, resulting in trismus. Because of its thickness, isolated fractures of the zygoma are rare, often involving extension into the thinner bones of the orbit or maxilla, otherwise known as zygomaticomaxillary (ie, tetrapod or tripod fractures).

Maxillary (Le Fort): Rene Le Fort first described fractures of the maxillary region in the 1900s (see image below). Classification of maxillary fractures is based on the most superior level of the fracture site.[5]

Le Fort fractures. Le Fort fractures.

Le Fort I injuries involve a transverse fracture of the maxilla above the level of the root apices and through or below the level of the nose.

Le Fort II injuries traverse the nose, infraorbital rim, and orbital floor and then proceed laterally through the lateral buttress and posteriorly through the pterygomaxillary buttress.

Le Fort III injuries, also known as craniofacial dysjunction, result from motor vehicle or motorcycle accidents and are the result of the mid face being separated from the cranial base.

Mandibular: Fractures of the mandible (see image below) can involve the symphysis, body, angle, ramus, condyle, and subcondyle regions. Fractures of the mandibular body, condyle, and angle occur with nearly equal frequency, followed by fractures of the ramus and coronoid process.[5] Generally, motor vehicle accidents result in fractures of the condylar and symphysis regions because the force is directed against the chin, whereas injuries from boxing are more likely to be located in the mandibular angle, as the result of a right-handed punch. Over 50% of mandible fractures are multiple; the presence of one mandibular fracture mandates evaluation for additional fractures, perhaps contralateral to the affected side.[5]

Mandibular fractures. Mandibular fractures. PreviousNextSport-Specific Biomechanics

In general, facial fractures in athletic activities result from direct trauma over a small surface area. Sports that present a higher risk are those that involve small objects that are propelled at high velocity, such as baseball, softball, hockey, lacrosse, jai alai, and racquetball. Athletes who participate in sports with high levels of physical contact and collision are at risk as well; these sports include football, basketball, rugby, hockey, martial arts, and boxing.

Many of these sports have safety measures to limit the incidence of facial injuries, and attention should be paid to the rules of use. Racquetball players should always play with goggles to limit orbital blow-out injuries. In hockey, face guards with helmets are required in lower levels of play but not at the professional level. High school football players should all have mouthpieces fitted for them, and mouthpieces should be worn in place before every play.

An athlete's vision should be checked as part of a preparticipation physical examination yearly. Visual risk factors include a corrected visual acuity of 20/40 or less or spectacle correction greater than 6 diopters (D). These athletes need an ophthalmologist's evaluation before competing in sports.

A one-eyed athlete is defined as one with a visual acuity in one eye of 20/200 or less. These athletes may be able to participate with proper protection, and an ophthalmologist's evaluation is essential.

PreviousProceed to Clinical Presentation , Facial Fractures

Sunday, January 12, 2014

Phalangeal Fractures

Background

Hand injuries are very common in all sports, especially in ball-playing athletes. Most athletic hand injuries are closed hand injuries and include ligamentous injuries, fractures and fracture-dislocations, tendon injuries, and neurovascular problems. There is increasing recognition that fractures and dislocations of the hand can result in long-term pain and disability if they are not recognized and treated early.[1, 2, 3, 4, 5]

Extra-articular fractures of the distal phalanx are common and are associated with significant soft-tissue injury. Most distal phalangeal fractures are crush injuries from a perpendicular force. They can be associated with significant debility, usually in the form of soft-tissue loss, nail bed injury, or posttraumatic neuromas. Intra-articular fractures of the distal phalanx can result from avulsion of either the extensor tendon, also known as mallet fractures, or of the flexor digitorum profundus, also known as jersey fractures. These can be associated with either small dorsal fragments or larger articular fragments with volar subluxation of the volar fragment. Conservative management is usually the standard of treatment.

Fractures of the proximal phalanx are more common than fractures of the middle phalanges. Dorsal or palmar angulation may occur with these fractures, depending on their location. Nondisplaced fractures are usually stable and are treated with closed reduction and fixation.[2, 6] If significant comminution or segmental bone loss is present, these unstable fractures may require either internal or external fixation.

The proximal interphalangeal (PIP) joint is particularly vulnerable to injury as either an ligamentous or intra-articular fracture, with or without subluxation or dislocation. Middle phalangeal articular fractures at the PIP joint include dorsal lip fractures, palmar lip fractures, and central articular disruptions or pilon fractures. Avulsion and impaction sheer are 2 fracture mechanisms.

Middle phalanx palmar lip fractures are the most common form of osseous injury associated with PIP joint fracture-dislocations. Dorsal fracture-dislocation of the PIP joint is reported to occur in 9 of every 100,000 people each year. Many of these injuries are frequently ignored or treated inappropriately. As a result, there can be permanent swelling, pain, and variable degrees of stiffness, angulation, and degenerative changes.

Hand fractures in the athlete are treated with adequate alignment, immobilization, and then motion. In general, intra-articular fractures must be reduced anatomically. Reduction requires early recognition of the exact location of the fracture and having a complete understanding of the muscle pull on the fragments, then minimizing the deforming force.

See the image below.

Acute dorsal proximal interphalangeal joint fractuAcute dorsal proximal interphalangeal joint fracture-dislocation.

For patient education resources, see the Breaks, Fractures, and Dislocations Center, as well as Broken Finger, Broken Hand, and Wrist Injury.

NextFunctional Anatomy

The phalanges do not contain muscle bellies, and motor function is accomplished only by the flexor and extensor tendons. An overview of the muscles and tendons of the hand is necessary. The thenar muscles consist of 3 intrinsic muscles including the abductor pollicis brevis (which abducts the thumb), the flexor pollicis brevis (which flexes the proximal phalanx of the thumb), and the opponens pollicis (which produces opposition of the thumb).

All 3 intrinsic thenar muscles are supplied by the recurrent branch of the median nerve. The adductor pollicis adducts the thumb and is supplied by the deep branch of the ulnar nerve. The hypothenar muscles are also supplied by the deep branch of the ulnar nerve.

The abductor digiti minimi abducts the fifth digit and flexes its proximal phalanx. The flexor digiti minimi is deeper and also flexes the proximal phalanx of the fifth digit. The opponens digiti minimi, as its name implies, opposes the fifth digit.

The lumbricals are 4 muscles that arise from the tendons of flexor digitorum profundus. Their tendons insert into the radial side of each of the proximal phalanges of the fingers and into the dorsal hood. They flex the metacarpophalangeal joints and extend the interphalangeal joints. The first and second lumbricals are supplied by the median nerve, and the third and fourth lumbricals are supplied by the ulnar nerve.

The palmar and dorsal interossei arise from the metacarpals. The palmar interossei insert into the proximal phalanx and the expansion of the extensor digitorum communis. The palmar interossei are adductor muscles. Dorsal interossei are abductors and insert into the proximal phalanges and the dorsal digital hood. The interosseous muscles are all supplied by the deep branch of the ulnar nerve.

As the tendons of the long flexor and extensor muscles reach the hand, the flexor tendons must first pass deep to the flexor retinaculum and the extensor tendons must pass under the extensor retinaculum. Flexor tendons on the palmar side are anchored to the phalanges by fibrous flexor sheaths to prevent "bow-stringing." Synovial sheaths prevent friction from occurring between fibrous flexor sheaths and the tendons. Synovial sheaths are present on the dorsum of the hand deep to the extensor retinaculum. They extend from a point proximal to the retinaculum to a point in the proximal one third of the dorsum of the hand.

Anatomy of the distal interphalangeal (DIP) joint includes the insertion of the extensor tendon on the distal phalanx.

PreviousNextSport-Specific Biomechanics

The PIP joint is the most commonly injured area in the hand. There is both anatomic and functional complexity to this joint, which consists of the articulation of the proximal end of the middle phalanx and the distal end of the proximal phalanx. It is a hinge joint with range of motion from 0 º to 120 º in the extension-flexion plane, with the bulk of static and dynamic stability provided by the surrounding ligaments and tendons.

The capsule surrounding the articular surface is composed of the volar plate, thick collateral ligaments, and the extensor tendon dorsally, which divides into 3 slips as it passes over the proximal phalanx. The central slip of the extensor tendon passes directly over the joint and inserts on the dorsal base of the middle phalanx. The lateral bands of the extensor tendon combine distally with the tendons of the intrinsic hand muscles (the retinacular ligaments) to form the extensor tendon that attach to the distal phalanx.

The thick ulnar and radial collateral ligaments of the PIP joint combine with the volar plate to provide lateral stability. The volar plate, a thick fibrocartilaginous structure, forms a sturdy attachment to the middle phalanx where it becomes continuous with the articular cartilage. This limits extension of the PIP joint beyond 0 º.

Proximally, the volar plate forms a thin continuous attachment with the synovial reflection. The lateral margins remain thick strong ligaments. This results in a cul-de-sac between the proximal half of the volar plate and the head of the proximal phalanx, which allows the base of the middle phalanx to glide along the articular surface of the proximal phalanx as the finger flexes. Thus, the volar plate becomes both a static stabilizer limiting hyperextension beyond 0 º and a dynamic stabilizer that influences the position of the flexor tendons at initiation of PIP joint flexion.

PreviousProceed to Clinical Presentation , Phalangeal Fractures

Monday, December 30, 2013

Femur Injuries and Fractures

Background

The spectrum of femoral shaft fractures is wide and ranges from nondisplaced femoral stress fractures to fractures associated with severe comminution and significant soft-tissue injury. Femoral shaft (see image below) fractures are generally caused by high-energy forces and are often associated with multisystem trauma. Isolated injuries can occur with repetitive stress and may occur in the presence metabolic bone diseases, metastatic disease, or primary bone tumors.[1, 2]

An example of an isolated, short, oblique midshaftAn example of an isolated, short, oblique midshaft femoral fracture, which is very amenable to intramedullary nailing. Although not seen in this x-ray film, radiographic visualization of both the proximal and distal joints should be performed for all diaphyseal fractures.

Most femoral diaphyseal fractures are treated surgically with intramedullary nails or plate fixation. The goal of treatment is reliable anatomic stabilization, allowing mobilization as soon as possible. Surgical stabilization is also important for early extremity function, allowing both hip and knee motion and strengthening. Injuries and fractures of the femoral shaft may have significant short- and long-term effects on the hip and knee joints if alignment is not restored.

Treatment of femoral shaft fractures has undergone significant evolution over the past century. Until the recent past, the definitive method for treating femoral shaft fractures was traction or splinting. Before the evolution of modern aggressive fracture treatment and techniques, these injuries were often disabling or fatal. Traction as a treatment option has many drawbacks, including poor control of the length and alignment of the fractured bone, development of pulmonary insufficiency, deep vein thrombosis, and joint stiffness due to supine positioning.

The femur is very vascular and fractures can result in significant blood loss into the thigh. Up to 40% of isolated fractures may require transfusion, as such injuries can result in loss of up to 3 units of blood.[3] This factor is significant, especially in elderly patients who have less cardiac reserve.

Femoral fracture patterns vary according to the direction of the force applied and the quantity of force absorbed. A perpendicular force results in a transverse fracture pattern, an axial force may injure the hip or knee, and rotational forces may cause spiral or oblique fracture patterns. The amount of comminution present increases with the amount of energy absorbed by the femur at the time of fracture.[1, 2, 4, 5]

For excellent patient education resources, visit eMedicineHealth's First Aid and Injuries Center. Also, see eMedicineHealth's patient education article Broken Leg.

Related Medscape Reference topics:

Femoral Neck Stress and Insufficiency Fractures [in the Orthopedic Surgery section]

Femoral Neck Stress Fracture

Femur Fracture [in the Emergency Medicine section]

Related Medscape resources:

Resource Center Exercise and Sports Medicine

Specialty Site Emergency Medicine

Specialty Site Orthopaedics

CME A 49-Year-Old Man With a Femur Fracture and Hyperdense Bones

CME Vitamin D and Musculoskeletal Health

NextEpidemiologyFrequencyUnited StatesThe incidence of femoral fractures is reported as 1-1.33 fractures per 10,000 population per year (1 case per 10,000 population). In individuals younger than 25 years and those older than 65 years, the rate of femoral fractures is 3 fractures per 10,000 population annually. These injuries are most common in males younger than 30 years. Causes may include automobile, motorcycle, or recreational vehicle accidents or gunshot wounds. The average number of days lost from work or school from femoral fractures is 30.The average number of days of restricted activity due to femoral fractures is 107.The incidence of femoral injuries and fractures increases in elderly patients.PreviousNextFunctional Anatomy

The femur is the strongest, longest, and heaviest bone in the body and is essential for normal ambulation. It consists of 3 parts (ie, femoral shaft or diaphysis, proximal metaphysis, distal metaphysis). The femoral shaft is tubular with a slight anterior bow, extending from the lesser trochanter to the flare of the femoral condyles. During weight bearing, the anterior bow produces compression forces on the medial side and tensile forces on the lateral side. The femur is a structure for standing and walking, and it is subject to many forces during walking, including axial loading, bending, and torsional forces. During contraction, the large muscles surrounding the femur account for most of the applied forces.[1, 2, 4, 5]

Several large muscles attach to the femur. Proximally, the gluteus medius and minimus attach to the greater trochanter, resulting in abduction of the femur with fracture. The iliopsoas attaches to the lesser trochanter, resulting in internal rotation and external rotation with fractures. The linea aspera (rough line on the posterior shaft of the femur) reinforces the strength and is an attachment for the gluteus maximus, adductor magnus, adductor brevis, vastus lateralis, vastus medialis, vastus intermedius, and short head of the biceps. Distally, the large adductor muscle mass attaches medially, resulting in an apex lateral deformity with fractures. The medial and lateral heads of the gastrocnemius attach over the posterior femoral condyles, resulting in flexion deformity in distal-third fractures.

The blood supply enters the femur through metaphyseal arteries and branches of the profunda femoris artery, penetrating the diaphysis and forming medullary arteries extending proximally and distally. With intramedullary nailing, the blood supply is disrupted and progressively reestablishes itself over 6-8 weeks. Healing of the fracture is enhanced by the surrounding soft tissue and local recruitment of blood supply around the callus. The femoral artery courses down the medial aspect of the thigh to the adductor hiatus, at which time it becomes the popliteal artery. Injuries to the artery occur at the level of the adductor hiatus, where soft-tissue attachments may cause tethering. Uncommonly, the sciatic nerve is injured in femoral shaft fractures; however, it may become injured in proximal or distal femoral injuries.

Related Medscape Reference topics:

Nerve Entrapment Syndromes [in the Neurosurgery section]

Nerve Entrapment Syndromes of the Lower Extremity [in the Orthopedic Surgery section]

PreviousNextSport-Specific Biomechanics

Trauma-induced fractures of the femur occur with contact and during high-speed sports. A significant amount of energy is transferred to the limb in a femur fracture, such as might be generated in skiing, football, hockey, rodeo, and motor sports.

Stress fracture

A femoral stress fracture is the result of cyclic overloading of the bone or a dramatic increase in the muscular forces across their insertion, causing microfracture. These repetitive stresses overcome the ability of the bone to heal the microtrauma. The area most susceptible to stress fracture is the medial junction of the proximal and middle third of the femur, which occurs as a result of the compression forces on the medial femur.

Stress fractures can also occur on the lateral aspect of the femoral neck in areas of distraction and are less likely to heal nonoperatively than compression-side stress fractures. Stress fractures occur most often in repetitive overload sports such as in runners and in baseball and basketball players. For more information, refer to the Medscape Reference article Femoral Neck Stress Fracture.

PreviousProceed to Clinical Presentation , Femur Injuries and Fractures